A Dynamically Reconfigurable BbNN Architecture for Scalable Neuroevolution in Hardware

Author:

García AlbertoORCID,Zamacola RafaelORCID,Otero AndrésORCID,de la Torre EduardoORCID

Abstract

In this paper, a novel hardware architecture for neuroevolution is presented, aiming to enable the continuous adaptation of systems working in dynamic environments, by including the training stage intrinsically in the computing edge. It is based on the block-based neural network model, integrated with an evolutionary algorithm that optimizes the weights and the topology of the network simultaneously. Differently to the state-of-the-art, the proposed implementation makes use of advanced dynamic and partial reconfiguration features to reconfigure the network during evolution and, if required, to adapt its size dynamically. This way, the number of logic resources occupied by the network can be adapted by the evolutionary algorithm to the complexity of the problem, the expected quality of the results, or other performance indicators. The proposed architecture, implemented in a Xilinx Zynq-7020 System-on-a-Chip (SoC) FPGA device, reduces the usage of DSPs and BRAMS while introducing a novel synchronization scheme that controls the latency of the circuit. The proposed neuroevolvable architecture has been integrated with the OpenAI toolkit to show how it can efficiently be applied to control problems, with a variable complexity and dynamic behavior. The versatility of the solution is assessed by also targeting classification problems.

Funder

H2020 LEIT Information and Communication Technologies

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference50 articles.

1. Genetic Algorithms in Search, Optimization and Machine Learning;Goldberg,1989

2. Evolutionary Modular Robotics: Survey and Analysis

3. A scalable pipeline for designing reconfigurable organisms

4. Automated antenna design with evolutionary algorithms;Hornby,2006

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3