Abstract
Classical cryptographic methods that inherently employ secret keys embedded in non-volatile memory have been known to be impractical for limited-resource Internet of Things (IoT) devices. Physical Unclonable Functions (PUFs) have emerged as an applicable solution to provide a keyless means for secure authentication. PUFs utilize inevitable variations of integrated circuits (ICs) components, manifest during the fabrication process, to extract unique responses. Double Arbiter PUFs (DAPUFs) have been recently proposed to overcome security issues in XOR PUF and enhance the tolerance of delay-based PUFs against modeling attacks. This paper provides comprehensive risk analysis and performance evaluation of all proposed DAPUF designs and compares them with their counterparts from XOR PUF. We generated different sets of real challenge–response pairs CRPs from three FPGA hardware boards to evaluate the performance of both DAPUF and XOR PUF designs using special-purpose evaluation metrics. We show that none of the proposed designs of DAPUF is strictly preferred over XOR PUF designs. In addition, our security analysis using neural network reveals the vulnerability of all DAPUF designs against machine learning attacks.
Funder
National Science Foundation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献