Finding Efficient and Lower Capacitance Paths for the Transfer of Energy in a Digital Microgrid

Author:

Jiang Zhengqi,Rojas-Cessa RobertoORCID

Abstract

In a digital microgrid (DMG), different from an analogous microgrid, energy is transmitted in well-defined amounts and in a store-and-forward fashion. Nodes of a DMG network, or energy packet switches (EPSs), use supercapacitors as temporary energy storage units to control the amount of energy supplied to a load. An EPS aggregates energy coming from different inputs or sources and forwards it to other EPSs or to a load. Rather than referring to electrical power, we measure the delivery of it as energy. An EPS is built with many supercapacitors to be able to provide significant amounts of energy to one or multiple loads. An EPS dedicates a configurable number of supercapacitors to an energy flow. In this paper, we find the conditions to achieve the smallest energy loss in the supply of energy from energy sources to loads in a DMG and propose a routing algorithm to find a path with small capacitance in a DMG network built with store-and-forward energy nodes. In addition, because an EPS has a finite amount of capacitance, the number of flows that the DMG can sustain may be limited. Exacerbating this problem, the passive transfer of energy between energy units may suffer losses as a result of the capacitance used and energy transmitted between supercapacitors. Therefore, the path between a source and a load has to be carefully selected. To solve this problem, our proposed routing algorithm finds the smallest capacitance paths to enable the scalability of the DMG. We analyze a path of supercapacitor-based networks and underscore the conditions to achieve minimal energy losses, to minimize the path capacitance, and to balance these two conflicting objectives. We analyze these approaches and show numerical examples on a small power network. Results show that total energy loss in this DMG is path independent as this loss depends on only the voltage of the capacitors at Node 1; the node connected to the source. In addition, results show that by adopting the proposed algorithm, the scalability of the DMG can be increased by finding the smallest capacitance paths to transfer energy between the sources and the loads. We show how store-and-forward transfer works on an actual DMG testbed with two EPSs and two loads.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3