An Advanced Pruning Method in the Architecture of Extreme Learning Machines Using L1-Regularization and Bootstrapping

Author:

de Campos Souza Paulo VitorORCID,Bambirra Torres Luiz CarlosORCID,Lacerda Silva Gustavo RodriguesORCID,Braga Antonio de PaduaORCID,Lughofer EdwinORCID

Abstract

Extreme learning machines (ELMs) are efficient for classification, regression, and time series prediction, as well as being a clear solution to backpropagation structures to determine values in intermediate layers of the learning model. One of the problems that an ELM may face is due to a large number of neurons in the hidden layer, making the expert model a specific data set. With a large number of neurons in the hidden layer, overfitting is more likely and thus unnecessary information can deterioriate the performance of the neural network. To solve this problem, a pruning method is proposed, called Pruning ELM Using Bootstrapped Lasso BR-ELM, which is based on regularization and resampling techniques, to select the most representative neurons for the model response. This method is based on an ensembled variant of Lasso (achieved through bootstrap replications) and aims to shrink the output weight parameters of the neurons to 0 as many and as much as possible. According to a subset of candidate regressors having significant coefficient values (greater than 0), it is possible to select the best neurons in the hidden layer of the ELM. Finally, pattern classification tests and benchmark regression tests of complex real-world problems are performed by comparing the proposed approach to other pruning models for ELMs. It can be seen that statistically BR-ELM can outperform several related state-of-the-art methods in terms of classification accuracies and model errors (while performing equally to Pruning-ELM P-ELM), and this with a significantly reduced number of finally selected neurons.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3