A Low-Voltage, Ultra-Low-Power, High-Gain Operational Amplifier Design for Portable Wearable Devices

Author:

Bai Na,Li XiaolongORCID,Xu YaohuaORCID

Abstract

Based on the SMIC 0.13 um CMOS technology, this paper uses a 0.8 V supply voltage to design a low-voltage, ultra-low-power, high-gain, two-stage, fully differential operational amplifier. Through the simulation analysis, when the supply voltage is 0.8 V, the design circuit meets the ultra-low power consumption and also has the characteristic of high gain. The five-tube, fully differential, and common-source amplifier circuits provide the operational amplifier with high gain and large swing. Unlike the traditional common-mode feedback, this paper uses the output of the common-mode feedback as the bias voltage of the five-tube operational transconductance amplifier load, which reduces the design cost of the circuit; the structure involves self-cascoding composite MOS, which makes the common-mode feedback loop more sensitive. The frequency compensation circuit adopts Miller compensation technology with zero-pole separation, which increases the stability of the circuit. The input of the circuit uses the current mirror. A small reference current is chosen to reduce power consumption. A detailed performance simulation analysis of this operational amplifier circuit is carried out on the Cadence spectre platform. The open-loop gain of this operational amplifier is 74.1 dB, the phase margin is 61°, the output swing is 0.7 V, the common-mode rejection ratio is 109 dB, and the static power consumption is only 11.2 uW.

Funder

National Natural Science Foundation of China

Key Laboratory of Computational Intelligence and Signal Processing, Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3