Formal Modeling of IoT and Drone-Based Forest Fire Detection and Counteraction System

Author:

Tehseen Aqsa,Zafar Nazir Ahmad,Ali Tariq,Jameel Fatima,Alkhammash Eman H.

Abstract

Forests are an enduring component of the natural world and perform a vital role in protecting the environment. Forests are valuable resources to control global warming and provide oxygen for the survival of human life, including wood for households. Forest fires have recently emerged as a major threat to biological processes and the ecosystem. Unfortunately, almost every year, fire damages millions of hectares of forest land due to late and inefficient detection of fire. However, it is important to identify the forest fire at the initial level before it spreads to vast areas and destroys natural resources. In this paper, a formal model of the Internet of Things (IoT) and drone-based forest fire detection and counteraction system is presented. The proposed system comprises network maintenance. Sensor deployment is on trees, the ground, and animals in the form of subnets to transmit sensed data to the control room. All subnets are connected to the control room through gateway nodes. Alarms are being used to alert human beings and animals to save their lives, which will help to initially protect them from fire. The embedded sensors collect the information and transfer it to the gateways. Drones are being used for real-time visualization of fire-affected areas and to perform actions to control fires because they play a vital role in disasters. Graph theory is used to construct an efficient model and to show the connectivity of the network. To identify failures and develop recovery procedures, the algorithm is designed through the graph-based model. The model is developed by the Vienna Development Method-Specification Language (VDM-SL), and the correctness of the model is ensured using various VDM-SL toolbox facilities.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3