Abstract
In this study, a low-voltage three-phase inverter was used alongside a shunt resistor to measure the current. However, it is known that this type of inverter and shunt resistor system has a region where the measurement of current is impossible due to structural limitations. As a result, many studies have focused on this region through the use of additional algorithms. Most studies measured current by forcibly adjusting the PWM duty in order to measure the current at the region where it could not be sensed. However, unfortunately, the total harmonic distortion (THD) increases in the current due to PWM adjustment. This causes an increase in torque ripple and inverter control instability. Therefore, in this paper, current was measured using the Rds(on) value between the drain source resistor when MOSFET was turned on and the Kalman filter in a low-voltage three-phase inverter with a single shunt. Additionally, the value was verified via comparison with the values achieved when a Hall-type current sensor and single shunt were used. As a result, this study confirmed that the inverter with a single shunt performs the same as a Hall-type sensor at the region where current cannot be detected.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献