Abstract
This paper aims to investigate the reconfigurations of rotor flux barriers for a five-phase Permanent Magnet Assisted Synchronous Reluctance Machine (PMASynRM). To precisely study the performance of the proposed configurations, a conventional PMASynRM with double-layer flux barriers is included in the study. Since the novel rotor schemes consume the same amount of rare-earth magnets, steel sheet materials, and copper wire, resulting in no extra manufacturing costs, the optimal reconfiguration should be determined, providing developed electromagnetic characteristics. Thus, all the proposed models are designed and analyzed under the same condition. The Lumped Parameter Model (LPM) is exported to the Finite Element Method (FEM) for precise analysis to reach developed torque and lower values of torque ripple. Based on the FEM results the model presenting the lowest torque fluctuations is selected as the optimal model and dynamically investigated. According to the results, in comparison with the conventional model, the introduced rotor designs provide a much lower value of torque fluctuations with a desirable amount of electromagnetic torque and power. In addition, the optimal model presents high values of power factor and efficiency, making it a vital alternative for low-torque ripple high-speed operations with no extra cost to the implementation process.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献