Abstract
LiDAR has been widely used in autonomous driving systems to provide high-precision 3D geometric information about the vehicle’s surroundings for perception, localization, and path planning. LiDAR-based point cloud semantic segmentation is an important task with a critical real-time requirement. However, most of the existing convolutional neural network (CNN) models for 3D point cloud semantic segmentation are very complex and can hardly be processed at real-time on an embedded platform. In this study, a lightweight CNN structure was proposed for projection-based LiDAR point cloud semantic segmentation with only 1.9 M parameters that gave an 87% reduction comparing to the state-of-the-art networks. When evaluated on a GPU, the processing time was 38.5 ms per frame, and it achieved a 47.9% mIoU score on Semantic-KITTI dataset. In addition, the proposed CNN is targeted on an FPGA using an NVDLA architecture, which results in a 2.74x speedup over the GPU implementation with a 46 times improvement in terms of power efficiency.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献