Virtual Synchronous Generator Using an Intelligent Controller for Virtual Inertia Estimation

Author:

Tan Kuang-HsiungORCID,Lin Faa-JengORCID,Tseng Tzu-Yu,Li Meng-Yang,Lee Yih-Der

Abstract

Virtual synchronous generators (VSGs) with inertia characteristics are generally adopted for the control of distributed generators (DGs) in order to mimic a synchronous generator. However, since the amount of virtual inertia in VSG control is usually constant and given by trial and error, the real power and frequency oscillations of a battery energy storage system (BESS) occurring under load variation result in the degradation of the control performance of the DG. Thus, in this study, a novel virtual inertia estimation methodology is proposed to estimate suitable values of virtual inertia for VSGs and to suppress the real power output and frequency oscillations of the DG under load variation. In addition, to improve the function of the proposed virtual inertia estimator and the transient responses of the real power output and frequency of the DG, an online-trained Petri probabilistic wavelet fuzzy neural network (PPWFNN) controller is proposed to replace the proportional integral (PI) controller. The network structure and the online learning algorithm using backpropagation (BP) of the proposed PPWFNN are represented in detail. Finally, on the basis of the experimental results, it can be concluded that superior performance in terms of real power output and frequency response under load variation can be achieved by using the proposed virtual inertia estimator and the intelligent PPWFNN controller.

Funder

Ministry of Science and Technology of Taiwan, R.O.C.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3