The Possibility of Enhanced Power Transfer in a Multi-Terminal Power System through Simultaneous AC–DC Power Transmission

Author:

Parveen ShaistaORCID,Hameed Salman,Rahman HafizurORCID,Rahman Khaliqur,Tariq MohdORCID,Alamri BasemORCID,Ahmad Akbar

Abstract

The feasibility of power transfer enhancement, through simultaneous AC–DC power transmission in a two-terminal transmission network, has been proposed earlier by the authors, and the concept is well established. To meet the increase in demand for electricity, a new technique is proposed in this article to increase the use of existing transmission lines in addition to independent control of AC and DC power flow. This paper extends the concept to a three-terminal transmission network by considering a power tapping from the middle of the line. DC is also superimposed in the already existing three-terminal AC transmission system. In the proposed topology, a multi-terminal simultaneous AC–DC system is used, which is integrated with a zig-zag transformer and more than two voltage source converter (VSC) stations. Each terminal may represent an area of the power system. Anyone/two-terminal(s) may act as sending end, whereas the remaining two/one terminal(s) may act as receiving end. Power can flow in either direction through each segment of the transmission system. At sending end, VSC converts a part of AC to DC and injects it into the neutral of the zig-zag transformer. On receiving terminal, DC power is tapped from neutral of zig-zag transformer and fed to VSC for conversion back to AC. The concept is verified in the digital simulation software PSCAD/EMTDC.

Funder

Taif University Researchers Supporting Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3