Embedded Memories for Cryogenic Applications

Author:

Garzón EstebanORCID,Teman AdamORCID,Lanuzza MarcoORCID

Abstract

The ever-growing interest in cryogenic applications has prompted the investigation for energy-efficient and high-density memory technologies that are able to operate efficiently at extremely low temperatures. This work analyzes three appealing embedded memory technologies under cooling—from room temperature (300 K) down to cryogenic levels (77 K). As the temperature goes down to 77 K, six-transistor static random-access memory (6T-SRAM) presents slight improvements for static noise margin (SNM) during hold and read operations, while suffering from lower (−16%) write SNM. Gain-cell embedded DRAM (GC-eDRAM) shows significant benefits under these conditions, with read voltage margins and data retention time improved by about 2× and 900×, respectively. Non-volatile spin-transfer torque magnetic random access memory (STT-MRAM) based on single- or double-barrier magnetic tunnel junctions (MTJs) exhibit higher read voltage sensing margins (36% and 48%, respectively), at the cost of longer write access time (1.45× and 2.1×, respectively). The above characteristics make the considered memory technologies to be attractive candidates not only for high-performance computing, but also enable the possibility to bridge the gap from room-temperature to the realm of cryogenic applications that operate down to liquid helium temperatures and below.

Funder

Israel Science Foundation

Smart Imaging Consortium

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference35 articles.

1. International Roadmap for Devices and Systems—Cryogenic Electronics and Quantum Information Processinghttps://irds.ieee.org/editions/2021/cryogenic-electronics-and-quantum-information-processing

2. Cryogenic Operation of 3-D Flash Memory for Storage Performance Improvement and Bit Cost Scaling

3. Cryogenic PIM: Challenges & Opportunities

4. Influence of substrate freeze-out on the characteristics of MOS transistors at very low temperatures

5. Gain-Cell Embedded DRAM Under Cryogenic Operation—A First Study

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3