Direct Sliding Mode Control for Dynamic Instabilities in DC-Link Voltage of Standalone Photovoltaic Systems with a Small Capacitor

Author:

Al-Wesabi IbrahimORCID,Fang Zhijian,Wei Zhiguo,Dong Hanlin

Abstract

Large electrolytic capacitors used in grid-connected and stand-alone photovoltaic (PV) applications for power decoupling purposes are unreliable because of their short lifetime. Film capacitors can be used instead of electrolytic capacitors if the energy storage requirement of the power conditioning units (PCUs) is reduced, since they offer better reliability and have a longer lifetime. Film capacitors have a lower capacitance than electrolytic capacitors, causing enormous frequency ripples on the DC-link voltage and affecting the standalone photovoltaic system’s dynamic performance. This research provided novel direct sliding mode controllers (DSMCs) for minimizing DC-link capacitor, regulating various components of the PV/BES system that assists to manage the DC-link voltage with a small capacitor. DSMCs were combined with the perturb and observe (P&O) method for DC boost converters to increase the photovoltaic system’s dynamic performance, and regulate the battery’s bidirectional converter (BDC) to overcome the DC-link voltage instabilities caused via a lower DC-link capacitor. The system is intended to power both AC and DC loads in places without grid connection. The system’s functions are divided into four modes, dependent on energy supply and demand, and the battery’s state of charge. The findings illustrate the controllers’ durability and the system’s outstanding performance. The testing was carried out on the MT real-time control platform NI PXIE-1071 utilizing Hardware-In-The-Loop experiments and MATLAB/Simulink.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3