Automated Defect Analysis System for Industrial Computerized Tomography Images of Solid Rocket Motor Grains Based on YOLO-V4 Model

Author:

Dai Junjie,Li Tianpeng,Xuan Zhaolong,Feng Zirui

Abstract

As industrial computerized tomography (ICT) is widely used in the non-destructive testing of a solid rocket motor (SRM), the problem of how to automatically discriminate defect types and measure defect sizes with high accuracy in ICT images of SRM grains needs to be urgently solved. To address the problems of low manual recognition efficiency and data utilization in the ICT image analysis of SRM grains, we proposed an automated defect analysis (ADA) system for ICT images of SRM grains based on the YOLO-V4 model. Using the region proposal of the YOLO-V4 model, a region growing algorithm with automatic selection of seed points was proposed to segment the defect areas of the ICT images of grains. Defect sizes were automatically measured based on the automatic determination of defect types by the YOLO-V4 model. In this paper, the image recognition performance of YOLO-V4, YOLO-V3, and Faster R-CNN models were compared. The results show that the average accuracy (mAP) of the YOLO-V4 model is more than 15% higher than that of the YOLO-V3 and Faster R-CNN models, the F1-score is 0.970, and the detection time per image is 0.152 s. The ADA system can measure defect sizes with an error of less than 10%. Tests show that the system proposed in this paper can automatically analyze the defects in ICT images of SRM grains and has certain application value.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. Pattern recognition in the automatic inspection of flaws in polymeric insulators

2. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

3. FAST R-CNN;Girshick;Proceedings of the International Conference on Computer Vision,2015

4. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

5. MASK R-CNN;He;Proceedings of the IEEE International Conference on Computer Vision,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3