Machine-Learning-Based Approach for Virtual Machine Allocation and Migration

Author:

Talwani Suruchi,Singla Jimmy,Mathur Gauri,Malik Navneet,Jhanjhi N. ZORCID,Masud MehediORCID,Aljahdali Sultan

Abstract

Due to its ability to supply reliable, robust and scalable computational power, cloud computing is becoming increasingly popular in industry, government, and academia. High-speed networks connect both virtual and real machines in cloud computing data centres. The system’s dynamic provisioning environment depends on the requirements of end-user computer resources. Hence, the operational costs of a particular data center are relatively high. To meet service level agreements (SLAs), it is essential to assign an appropriate maximum number of resources. Virtualization is a fundamental technology used in cloud computing. It assists cloud providers to manage data centre resources effectively, and, hence, improves resource usage by creating several virtualmachine (VM) instances. Furthermore, VMs can be dynamically integrated into a few physical nodes based on current resource requirements using live migration, while meeting SLAs. As a result, unoptimised and inefficient VM consolidation can reduce performance when an application is exposed to varying workloads. This paper introduces a new machine-learning-based approach for dynamically integrating VMs based on adaptive predictions of usage thresholds to achieve acceptable service level agreement (SLAs) standards. Dynamic data was generated during runtime to validate the efficiency of the proposed technique compared with other machine learning algorithms.

Funder

Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning to Estimate Workload and Balance Resources with Live Migration and VM Placement;Informatics;2024-07-19

2. Machine Learning and Deep Learning Algorithms for Green Computing;Advances in Computational Intelligence and Robotics;2024-02-27

3. Evaluation of Secure Methods for Migrating Virtual Machines to the Cloud;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

4. An Energy-Efficient VM Selection Using Updated Dragonfly Algorithm in Cloud Computing;International Journal of Computer Theory and Engineering;2024

5. A Comprehensive Review on Autonomous Consolidation of Virtual Machine for Energy and Resource Management;Proceedings of the 5th International Conference on Information Management & Machine Intelligence;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3