EE-MPTCP: An Energy-Efficient Multipath TCP Scheduler for IoT-Based Power Grid Monitoring Systems

Author:

Dong Zihang,Cao Yunming,Xiong NaixueORCID,Dong Pingping

Abstract

The Internet-of-Things (IoT) based monitoring system has significantly promoted the intelligence and automation of power grids. The inspection robots and wireless sensors used in the monitoring system usually have multiple network interfaces to achieve high throughput and reliability transmission. The concurrent usage of these available interfaces with Multipath TCP (MPTCP) can enhance the quality of service of the communications. However, traditional MPTCP scheduling algorithms may bring about data disorder and even buffer blocking, which severely affects the transmission performance of MPTCP. And the common MPTCP improvement mechanisms for IoT lack sufficient attention to energy consumption, which is important for the battery-limited wireless sensors. With the aim to promote conservative energy without loss of throughput, this paper develops an integrated multipath scheduler for energy consumption optimization named energy-efficient MPTCP (EE-MPTCP). EE-MPTCP first constructs a target optimization function which considers both network throughput and energy consumption. Then, based on the proposed MPTCP transmission model and existing energy efficiency model, the network throughput and energy consumption of each path can be estimated. Finally, a heuristic scheduling algorithm is proposed to find a suitable set of paths for each application. As confirmed by experiments based on Linux testbed as well as the NS3 simulation platform, the proposed scheduler can shorten the average completion time and reduce the energy consumption by up to 79.9% and 79.2%, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3