NeuralFMU: Presenting a Workflow for Integrating Hybrid NeuralODEs into Real-World Applications

Author:

Thummerer TobiasORCID,Stoljar Johannes,Mikelsons Lars

Abstract

The term NeuralODE describes the structural combination of an Artificial Neural Network (ANN) and a numerical solver for Ordinary Differential Equations (ODE), the former acts as the right-hand side of the ODE to be solved. This concept was further extended by a black-box model in the form of a Functional Mock-up Unit (FMU) to obtain a subclass of NeuralODEs, named NeuralFMUs. The resulting structure features the advantages of the first-principle and data-driven modeling approaches in one single simulation model: a higher prediction accuracy compared to conventional First-Principle Models (FPMs) and also a lower training effort compared to purely data-driven models. We present an intuitive workflow to set up and use NeuralFMUs, enabling the encapsulation and reuse of existing conventional models exported from common modeling tools. Moreover, we exemplify this concept by deploying a NeuralFMU for a consumption simulation based on a Vehicle Longitudinal Dynamics Model (VLDM), which is a typical use case in the automotive industry. Related challenges that are often neglected in scientific use cases, such as real measurements (e.g., noise), an unknown system state or high-frequency discontinuities, are handled in this contribution. To build a hybrid model with a higher prediction quality than the original FPM, we briefly highlight two open-source libraries: FMI.jl, which allows for the import of FMUs into the Julia programming language, as well as the library FMIFlux.jl, which enables the integration of FMUs into neural network topologies to obtain a NeuralFMU.

Funder

ITEA3

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3