Collaborative Autonomy: Human–Robot Interaction to the Test of Intelligent Help

Author:

Cantucci Filippo,Falcone RinoORCID

Abstract

A big challenge in human–robot interaction (HRI) is the design of autonomous robots that collaborate effectively with humans, exposing behaviors similar to those exhibited by humans when they interact with each other. Indeed, robots are part of daily life in multiple environments (i.e., cultural heritage sites, hospitals, offices, touristic scenarios and so on). In these contexts, robots have to coexist and interact with a wide spectrum of users not necessarily able or willing to adapt their interaction level to the kind requested by a machine: the users need to deal with artificial systems whose behaviors must be adapted as much as possible to the goals/needs of the users themselves, or more in general, to their mental states (beliefs, goals, plans and so on). In this paper, we introduce a cognitive architecture for adaptive and transparent human–robot interaction. The architecture allows a social robot to dynamically adjust its level of collaborative autonomy by restricting or expanding a delegated task on the basis of several context factors such as the mental states attributed to the human users involved in the interaction. This collaboration has to be based on different cognitive capabilities of the robot, i.e., the ability to build a user’s profile, to have a Theory of Mind of the user in terms of mental states attribution, to build a complex model of the context, intended both as a set of physical constraints and constraints due to the presence of other agents, with their own mental states. Based on the defined cognitive architecture and on the model of task delegation theorized by Castelfranchi and Falcone, the robot’s behavior is explainable by considering the abilities to attribute specific mental states to the user, the context in which it operates and its attitudes in adapting the level of autonomy to the user’s mental states and the context itself. The architecture has been implemented by exploiting the well known agent-oriented programming framework Jason. We provide the results of an HRI pilot study in which we recruited 26 real participants that have interacted with the humanoid robot Nao, widely used in HRI scenarios. The robot played the role of a museum assistant with the main goal to provide the user the most suitable museum exhibition to visit.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3