Comprehensive—Model Based on Time Series for the Generation of Traffic Knowledge for Bus Transit Rapid Line 6 of México City

Author:

Díaz-Casco Manuel A.,Carvajal-Gámez Blanca E.ORCID,Gutiérrez-Frías OctavioORCID,Osorio-Zúñiga Fernando S.

Abstract

Mobile sensor networks consist of different types of integrated devices that collect, disseminate, process and store information from the environments in which they are implemented. This type of network allows for the development of applications and systems in different areas for the generation of knowledge. In this paper, we propose a model called the Metrobus Arrival Prediction (MAP) model for predicting the arrival times of Line 6 buses of the bus rapid transit (BTR) system, known as the Metrobus, in Mexico City (CDMX). The network is composed of mobile and static nodes that collect data related to the speed and position of each Metrobus bus. These data are sent to the proposed time series model, which yields the Metrobus arrival time estimation. MAP allows the density of users projected during the day to be estimated with a time series model that uses the data collected and the historical data of each station. A comparison is made between the model results and the arrival time obtained with real-time traffic monitoring applications, such as Moovit and Google Maps. The proposed model, based on time series, takes the historical data (data of trajectory times) as reference to start the first arrival times. From these values, MAP feeds on the data collected through the sensor network. As the data are collected through the sensor network, the estimates present results, for example, the mean absolute error (MAE) of the expected time was less than 0.2 s and the root mean square error (RMSE) of the expected value was below 1 for the proposed model. Compared to real-time traffic platforms, it presents a value of 0.1650 of the average dispersion obtained in travel times. The obtained values provide certainty that the data shown presents results as accurately as a real-time platform that requires the data at the moments in which the traffic variations occur. Moreover, unlike other state-of-the-art models that rarely interact on the site, MAP requires a reduced number of variables, being an accessible tool for the implementation and scaling of real-time traffic monitoring.

Funder

Secretaria de investigación y Posgrado. Instituto Politécnico Nacional

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3