A Novel Target Tracking Scheme Based on Attention Mechanism in Complex Scenes

Author:

Wang YuORCID,Yang Zhutian,Yang Wei,Yang Jiamin

Abstract

In recent years, target tracking algorithms based on deep learning have realized significant progress, especially the Siamese neural network structure, which has a simple structure and excellent scalability. Although these methods provide excellent generalization capabilities, they fail to perform the task of learning target information discrimination smoothly due to being affected by distractors such as background clutter, occlusion, and target size. To solve this problem, in this paper we propose a newly improved Siamese network target tracking algorithm based on an attention mechanism. We introduce a channel attention module and a spatial attention module into the original network to improve the problem of insufficient semantic extraction ability of the convolutional layer of the tracking algorithm in complex environments. A channel attention mechanism enhances the feature extraction ability by using the network to learn the importance of each channel and establish the relationship between channels, while a spatial attention mechanism strengthens the feature extraction ability by establishing the importance of spatial position in locating the target or carrying out a certain degree of deformation. In this paper, the above two models are combined to improve the robustness of trackers without sacrificing tracking speed. We conduct a comprehensive experiment on the Object Tracking Benchmark dataset. The experimental results show that our algorithm outperforms other real-time trackers in both accuracy and robustness in most complex environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference34 articles.

1. Infant upper body 3D kinematics estimated using a commercial RGB-D sensor and a deep neural network tracking processing tool;Balta;Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA),2022

2. Robust Correlation Tracking in Unmanned Aerial Vehicle Videos via Deep Target-Specific Rectification Networks

3. Visual tracking: An experimental survey;Smeulders;IEEE Trans. Pattern Anal. Mach. Intell.,2013

4. Fast online object tracking and segmentation: A unifying approach;Wang;Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition,2019

5. High performance visual tracking with siamese region proposal network;Li;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3