G-Band Broad Bandwidth Extended Interaction Klystron with Traveling-Wave Output Structure

Author:

Xu Xiaotao,Li Hengliang,Yuan Xuesong,Chen Qingyun,Zu Yifan,Li Hailong,Yin YongORCID,Yan Yang

Abstract

In this paper, we investigate a large-sized beam tunnel, G-band extended interaction klystron (EIK) with a traveling wave output structure for the development of broad bandwidth EIKs. The high-quality factor F was introduced to estimate the bandwidth characteristics of the cluster cavities, and the optimal cluster cavity structure parameters were obtained based on this factor. The simulation mode of the device was designed by the 3D particle-in-cell (PIC) commercial simulation software. Four cluster cavities with a staggered distribution of frequencies were employed to expand the bunching bandwidth, and two traveling wave modes, 2π−π/10 and 2π−2π/10, were used as the operating modes in the output structure, effectively increasing the output bandwidth. The simulation findings show that the maximum output power is 170 W, the corresponding gain is 37.5 dB, and the 3-dB bandwidth is up to 1.25 GHz. The three-hole coupling structure with a large-sized beam tunnel provides convenience for the fabrication of devices in the G-band, and our study shows a potential method for the realization of a G-band broadband EIK.

Funder

National Key Research and Development Program of China

Sichuan Science and Technology Program

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3