Abstract
One of the most significant agricultural tasks in beekeeping involves continually observing the conditions inside and outside the beehive. This is mainly performed for the early detection of some harmful events. There have been many studies on how to detect and prevent such occurrences by performing periodic interventions or, when the frequency of such actions is hard to enforce, by using sensory systems that record the temperature, humidity, and weight of the beehive. Nevertheless, such methods are inaccurate, and their delivered outcomes usually diverge from the actual event or false trigger and introduce more effort and damage. In this paper, the authors propose a new low-cost, low-power system called Bee Sound Detector (BeeSD). BeeSD is a low-cost, embedded solution for beehive quality control. It incorporates the sensors mentioned above as well as real-time sound monitoring. With the combination of temperature, humidity, and sound sensors, the BeeSD can spot Colony Collapse Disorder events due to famine and extreme weather events, queen loss, and swarming. Furthermore, as a system, the BeeSD uses cloud logging and an appropriate mobile phone application to push notifications of extreme measurements to the farmers. Based on achieved performance indicators, the authors present their BeeSD IoT device and system operation, focusing on its advantages of low-cost, low-power, and easy-to-install characteristics.
Funder
General Secretariat for Research and Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献