Spatial and Temporal Normalization for Multi-Variate Time Series Prediction Using Machine Learning Algorithms

Author:

Providence Alimasi Mongo,Yang Chaoyu,Orphe Tshinkobo Bukasa,Mabaire Anesu,Agordzo George K.ORCID

Abstract

Multi-variable time series (MTS) information is a typical type of data inference in the real world. Every instance of MTS is produced via a hybrid dynamical scheme, the dynamics of which are often unknown. The hybrid species of this dynamical service are the outcome of high-frequency and low-frequency external impacts, as well as global and local spatial impacts. These influences impact MTS’s future growth; hence, they must be incorporated into time series forecasts. Two types of normalization modules, temporal and spatial normalization, are recommended to accomplish this. Each boosts the original data’s local and high-frequency processes distinctly. In addition, all components are easily incorporated into well-known deep learning techniques, such as Wavenet and Transformer. However, existing methodologies have inherent limitations when it comes to isolating the variables produced by each sort of influence from the real data. Consequently, the study encompasses conventional neural networks, such as the multi-layer perceptron (MLP), complex deep learning methods such as LSTM, two recurrent neural networks, support vector machines (SVM), and their application for regression, XGBoost, and others. Extensive experimental work on three datasets shows that the effectiveness of canonical frameworks could be greatly improved by adding more normalization components to how the MTS is used. This would make it as effective as the best MTS designs are currently available. Recurrent models, such as LSTM and RNN, attempt to recognize the temporal variability in the data; however, as a result, their effectiveness might soon decline. Last but not least, it is claimed that training a temporal framework that utilizes recurrence-based methods such as RNN and LSTM approaches is challenging and expensive, while the MLP network structure outperformed other models in terms of time series predictive performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference35 articles.

1. Forecasting and operational research: A review;Fildes;J. Oper. Res. Soc.,2008

2. The Generalized Dynamic Factor Model;Forni;J. Am. Stat. Assoc.,2005

3. Finding Electric Energy Consumption Patterns in Big Time Series Data;Omatu;Distributed Computing and Artificial Intelligence, 13th International Conference,2016

4. Scalable Forecasting Techniques Applied to Big Electricity Time Series;Rojas;Advances in Computational Intelligence,2017

5. Hyndman, R., Koehler, A.B., Ord, J.K., and Snyder, R.D. Forecasting with Exponential Smoothing: The State Space Approach, 2008.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3