An Enhanced Design of Sparse Autoencoder for Latent Features Extraction Based on Trigonometric Simplexes for Network Intrusion Detection Systems

Author:

Musafer HassanORCID,Abuzneid AbdelshakourORCID,Faezipour MiadORCID,Mahmood Ausif

Abstract

Despite the successful contributions in the field of network intrusion detection using machine learning algorithms and deep networks to learn the boundaries between normal traffic and network attacks, it is still challenging to detect various attacks with high performance. In this paper, we propose a novel mathematical model for further development of robust, reliable, and efficient software for practical intrusion detection applications. In this present work, we are concerned with optimal hyperparameters tuned for high performance sparse autoencoders for optimizing features and classifying normal and abnormal traffic patterns. The proposed framework allows the parameters of the back-propagation learning algorithm to be tuned with respect to the performance and architecture of the sparse autoencoder through a sequence of trigonometric simplex designs. These hyperparameters include the number of nodes in the hidden layer, learning rate of the hidden layer, and learning rate of the output layer. It is expected to achieve better results in extracting features and adapting to various levels of learning hierarchy as different layers of the autoencoder are characterized by different learning rates in the proposed framework. The idea is viewed such that every learning rate of a hidden layer is a dimension in a multidimensional space. Hence, a vector of the adaptive learning rates is implemented for the multiple layers of the network to accelerate the processing time that is required for the network to learn the mapping towards a combination of enhanced features and the optimal synaptic weights in the multiple layers for a given problem. The suggested framework is tested on CICIDS2017, a reliable intrusion detection dataset that covers all the common, updated intrusions and cyber-attacks. Experimental results demonstrate that the proposed architecture for intrusion detection yields superior performance compared to recently published algorithms in terms of classification accuracy and F-measure results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3