Sensor Selection via Maximizing Hybrid Bayesian Fisher Information and Mutual Information in Unreliable Sensor Networks

Author:

Yan QingliORCID,Chen Jianfeng

Abstract

The sensor selection problem is addressed for unreliable sensor networks. The Bayesian Fisher information (BFI) matrix, mutual information (MI) and their relationship are investigated under Gaussian mixture noise conditions. To overcome the flaw that the sensor selection methods based on either BFI matrix or MI could not provide coincident results, the multiple objective optimal (MOP) -based sensor selection approach is developed via minimizing the number of selected sensors while maximizing corresponding BFI matrix and MI. The variable weight decision making (VWDM) and technique for order of preference by similarity to ideal solution (TOPSIS) approaches are then proposed to find the candidate that can better trade off the cost and two performance metrics. Comparison results demonstrated that the proposed method can find a more informative sensor group, and ultimately, its overall localization performance outperforms the sensor selection methods based on BFI or MI.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3