A Novel Self-Powered Dynamic System Using a Quasi-Z-Source Inverter-Based Piezoelectric Vibration Energy Harvester

Author:

Poh Wesley Qi TongORCID,Bin Mohamad Saifuddin Muhammad RamadanORCID,Naayagi Ramasamy ThaiyalORCID

Abstract

The use of quasi-Z-source inverters (qZSIs) for DC-DC power conversion applications has gained much recognition when dealing with grid-tied renewable energy resource integrations. This paper proposes a novel self-powered dynamic system (SPDS) involving a piezoelectric vibration energy harvester (PVEH) using qZSI to establish interoperability with a DC load rated at 16.15 mW. Based on uncertain output performances from a piezoelectric cantilever beam (CB), the qZSI-based PVEH serves as a dynamic voltage restoration unit that establishes load-following synchronisation. It uses a proportional-integral based boost controller (PI-based BC) to generate strategic ordering of shoot-through voltage amplification into pulse-width modulation (PWM) gating sequences. The SPDS was modelled using two software based on commercially available product specifications: (i) COMSOL Multiphysics to mechanically design and optimise a CB. (ii) PSCAD/EMTDC to electronically design and integrate the qZSI with the optimised CB, while functioning as a testbed to model the SPDS against arbitrary wind speed and structural vibration frequency data collected from an above-ground mass rapid transit (MRT) train station in Khatib, Singapore. The acquired simulation results have depicted desirable transient responses at respective sub-systems, procuring fast settling-time responses, negligible steady-state error, as well as high efficiencies of 94.07% and 91.64% for the CB and SPDS respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3