Abstract
The design and implementation of the filters for the fifth-generation (5G) mobile communication systems are challengeable due to the demands of high integration, low-cost, and high-speed data transmission. In this paper, a dual-wideband bandpass filter (BPF) and a tri-wideband BPF for 5G mobile communications are proposed. The dual-wideband BPF consists of two folded open-loop stepped-impedance resonators (FOLSIRs), and the tri-wideband BPF is designed by placing a pair of folded uniform impedance resonator inside the dual-wideband BPF with little increase in the physical size of the filter. By employing a novel structural deformation of a stepped-impedance resonator, the FOLSIR is achieved with a more compact structure, a controllable transmission zero, and an adjustable resonant frequency. The measurement results show that the working bands of the two filters are 1.98–2.28/3.27–3.66 GHz and 2.035–2.305/3.31–3.71/4.54–5.18 GHz, respectively, which are consistent with the full-wave EM simulation results. The implemented filters have a compact size and the results show low loss, good out-of-band rejection, and wide passbands covering sub-6 GHz bands of 5G mobile communications and a commonly used spectrum.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献