Flux Weakening Control Technique without Look-Up Tables for SynRMs Based on Flux Saturation Models

Author:

Woo Tae-GyeomORCID,Lee Sang-Hoon,Lee Hak-Jun,Yoon Young-DooORCID

Abstract

This paper presents a flux weakening algorithm for synchronous reluctance motors (SynRMs) based on parameters estimated at standstill. Recently, flux saturated motors have been studied. Flux saturation models were identified and look-up tables were generated based on the saturation model for maximum torque per ampere (MTPA) and flux weakening operations. The operation with tables would degrade the accuracy of operating points when the table size is not enough. The proposed method implements a flux weakening operation without tables, and the operating points are determined with voltages and currents on operating points. Therefore, the accuracy can be maintained. In addition, the computation time to generate the tables is not needed, so the initial commissioning process can be reduced. The proposed method consists of two parts: the determination of a flux weakening region and the modification of current references. The flux weakening region is determined by the angle between direction vectors along the constant torque and voltage decreasing directions in the d-q axis current plane. After identifying the flux weakening region, the current references are modified for flux weakening according to the direction vector and appropriate magnitude. The direction and magnitude are determined by the operating point of the currents and magnitude of the output voltage, respectively. Using the flux saturation model for SynRMs, the flux weakening direction can be determined accurately. As a result, flux weakening can be performed precisely. The experimental results prove the validity of the proposed method.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3