Harnessing the Adversarial Perturbation to Enhance Security in the Autoencoder-Based Communication System

Author:

Deng ZhixiangORCID,Sang Qian

Abstract

Given the vulnerability of deep neural network to adversarial attacks, the application of deep learning in the wireless physical layer arouses comprehensive security concerns. In this paper, we consider an autoencoder-based communication system with a full-duplex (FD) legitimate receiver and an external eavesdropper. It is assumed that the system is trained from end-to-end based on the concepts of autoencoder. The FD legitimate receiver transmits a well-designed adversary perturbation signal to jam the eavesdropper while receiving information simultaneously. To defend the self-perturbation from the loop-back channel, the legitimate receiver is re-trained with the adversarial training method. The simulation results show that with the scheme proposed in this paper, the block-error-rate (BLER) of the legitimate receiver almost remains unaffected while the BLER of the eavesdropper is increased by orders of magnitude. This ensures reliable and secure transmission between the transmitter and the legitimate receiver.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3