Marching On-In-Time Unstructured PEEC Method for Electrically Large Structures with Conductive, Dielectric, and Magnetic Media

Author:

Torchio RiccardoORCID,Voltolina DimitriORCID,Bettini PaoloORCID,Moro FedericoORCID,Alotto PiergiorgioORCID

Abstract

The Marching On-In-Time (MOT) unstructured Partial Element Equivalent Circuit (PEEC) method for time domain electromagnetic problems is presented. The method allows the transient analysis of electrically large electromagnetic devices consisting of conductive, dielectric, and magnetic media coupled with external lumped circuits. By re-formulating PEEC following the Coulombian interpretation of magnetization phenomena and by using electric and magnetic vector potentials, the proposed approach allows for a completely equivalent treatment of electric and magnetic media and inhomogeneous and anisotropic materials are accounted for as well. With respect to the recently proposed Marching On-In-Time PEEC approach, based on the standard (structured) discretization of PEEC, the method presented in this paper uses a different space and time MOT discretization, which allows for a reduction in the number of the unknowns. Analytical and industrial test cases consisting in electrically large devices are considered (e.g., the model of a Neutral Beam Injector adopted in thermonuclear fusion applications). Results obtained from the simulations show that the proposed method is accurate and yields good performances. Moreover, when rich harmonic content transient phenomena are considered, the unstructured MOT–PEEC method allows for a significant reduction of the memory and computation time when compared to techniques based on Inverse Discrete Fourier Transform applied to the frequency domain unstructured PEEC approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3