Detection and Localization of Overlapped Fruits Application in an Apple Harvesting Robot

Author:

Jiao Yuhua,Luo Rong,Li Qianwen,Deng Xiaobo,Yin Xiang,Ruan Chengzhi,Jia WeikuanORCID

Abstract

For yield measurement of an apple orchard or the mechanical harvesting of apples, there needs to be accurate identification of the target apple fruit. However, in a natural scene, affected by the apple’s growth posture and camera position, there are many kinds of apple images, such as overlapped apples; mutual shadows or leaves; stems; etc. It is a challenge to accurately locate overlapped apples. They will influence the positioning time and recognition efficiency and then affect the harvesting efficiency of apple-harvesting robots or the accuracy of orchard yield measurement. In response to this problem, an overlapped circle positioning method based on local maxima is proposed. First, the apple image is transformed into the Lab color space and segmented by the K-means algorithm. Second, some morphological processes, like erosion and dilation, are implemented to abstract the outline of the apples. Then image points are divided into central points; edge points; or outer points. Third, a fast algorithm is used to calculate every internal point’s minimum distance from the edge. Then, the centers of the apples are obtained by finding the maxima among these distances. Last, the radii are acquired by figuring out the minimum distance between the center and the edge. Thus, positioning is achieved. Experimental results showed that this method can locate overlapped apples accurately and quickly when the apple contour was complete; and this has certain practicability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference29 articles.

1. Design and control of an apple harvesting robot;Zhao;Biosyst. Eng.,2011

2. Development of real-time recognition and localization methods for fruits and vegetables in field;Xiang;Trans. Chin. Soc. Agric. Mach.,2013

3. Apple harvesting robot under information technology: A review

4. Yield estimation model of single tree of Fuji apples based on bilateral image identification;Qian;Trans. Chin. Soc. Agric. Eng.,2013

5. Vision-based localisation of mature apples in tree images using convexity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3