Differentiated Protection and Hot/Cold-Aware Data Placement Policies through k-Means Clustering Analysis for 3D-NAND SSDs

Author:

Son Seungwoo,Kim JaehoORCID

Abstract

3D-NAND flash memory provides high capacity per unit area by stacking 2D-NAND cells having a planar structure. However, because of the nature of the lamination process, the frequency of error occurrence varies depending on each layer or physical cell location. This phenomenon becomes more pronounced as the number of flash memory write/erase (Program/Erasure) operations increases. Error correction code (ECC) is used for error correction in the majority of flash-based storage devices, such as SSDs (Solid State Drive). As this method provides a constant level of data protection for all-flash memory pages, there is a limitation in 3D-NAND flash memory, where the error rate varies depending on physical location. Consequently, in this paper, pages and layers with varying error rates are classified into clusters using the k-means machine-learning algorithm, and each cluster is assigned a different level of data protection strength. We classify pages and layers based on the number of error occurrences measured at the end of the endurance test, and for areas vulnerable to errors, it is shown as an example of providing differentiated data protection strength by adding parity data to the stripe. Furthermore, areas vulnerable to retention errors are identified based on retention error rates, and bit error rates are significantly reduced through our hot/cold-aware data placement policy. We show that the proposed differential data protection and hot/cold-aware data placement policies improve the reliability and lifespan of 3D-NAND flash memory compared with the existing ECC- or RAID-type data protection scheme.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3