Abstract
Accurate permittivity characterization has attracted a lot of attention in various areas. Resonant characterization methods are well-known for their accuracy, but they are restricted in very narrow frequency ranges, and thus, they are normally not recommended to be used for dispersive or high-loss materials. Transmission line characterization techniques are outstanding for being inexpensive, accurate, and broadband, but the algorithms are often complex to perform. This paper proposes a fast, simple, and accurate broadband permittivity characterization algorithm, which is mainly suitable for millimeter-wave applications. It combines a general line–line method and a closed-form algorithm, extracting the complex permittivity of the material under test (MUT) without the need for calculating any intermediate parameters. Validation measurements on de-ionized water in the frequency range from 140 to 220 GHz are in very good agreement with the literature data, which successfully indicates that the proposed algorithm is reliable and accurate for millimeter wave permittivity characterization.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献