Driver Cardiovascular Disease Detection Using Seismocardiogram

Author:

Uskovas GediminasORCID,Valinevicius Algimantas,Zilys Mindaugas,Navikas Dangirutis,Frivaldsky MichalORCID,Prauzek MichalORCID,Konecny JaromirORCID,Andriukaitis DariusORCID

Abstract

This article deals with the treatment and application of cardiac biosignals, an excited accelerometer, and a gyroscope in the prevention of accidents on the road. Previously conducted studies say that the seismocardiogram is a measure of cardiac microvibration signals that allows for detecting rhythms, heart valve opening and closing disorders, and monitoring of patients’ breathing. This article refers to the seismocardiogram hypothesis that the measurements of a seismocardiogram could be used to identify drivers’ heart problems before they reach a critical condition and safely stop the vehicle by informing the relevant departments in a nonclinical manner. The proposed system works without an electrocardiogram, which helps to detect heart rhythms more easily. The estimation of the heart rate (HR) is calculated through automatically detected aortic valve opening (AO) peaks. The system is composed of two micro-electromechanical systems (MEMSs) to evaluate physiological parameters and eliminate the effects of external interference on the entire system. The few digital filtering methods are discussed and benchmarked to increase seismocardiogram efficiency. As a result, the fourth adaptive filter obtains the estimated HR = 65 beats per min (bmp) in a still noisy signal (SNR = −11.32 dB). In contrast with the low processing benefit (3.39 dB), 27 AO peaks were detected with a 917.56-ms peak interval mean over 1.11 s, and the calculated root mean square error (RMSE) was 0.1942 m/s2 when the adaptive filter order is 50 and the adaptation step is equal to 0.933.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3