Abstract
To increase the output power of microstrip line traveling-wave tubes, a staggered rings microstrip line (SRML) slow-wave structure (SWS) based on a U-shaped mender line (U-shaped ML) SWS and a ring-shaped microstrip line (RML) SWS has been proposed in this paper. Compared with U-shaped ML SWS and RML SWS, SRML SWS has a wider transverse width, which means SRML SWS has a larger area for beam–wave interaction. The simulation results show that SRML SWS has a wider bandwidth than U-shaped ML SWS and a lower phase velocity than RML SWS. Input/output couplers, which consist of microstrip probes and transition sections, have been designed to transmit signals from a rectangular waveguide to the SWS; the simulation results present that the designed input/output structure has good transmission characteristics. Particle-in-cell (PIC) simulation results indicate that the SRML TWT has a maximum output of 322 W at 32.5 GHz under a beam voltage of 9.7 kV and a beam current of 380 mA, and the corresponding electronic efficiency is around 8.74%. The output power is over 100 W in the frequency range of 27 GHz to 38 GHz.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献