Understanding Coding Behavior: An Incremental Process Mining Approach

Author:

Ardimento PasqualeORCID,Bernardi Mario LucaORCID,Cimitile MartaORCID,Redavid DomenicoORCID,Ferilli StefanoORCID

Abstract

Capturing and analyzing interaction data in real-time from development environments can help in understanding how programmers handle coding activities. We propose the use of process mining to learn coding behavior from event logs captured from a customized Integrated Development Environment, concerning interactions with both such an environment and a Version Control System. In particular, by using an incremental approach, the discovered model can be refined after every single development session, which avoids the need to for the model to learn from scratch from previous sessions. It would also allow one to provide the programmer timely suggestions to improve their performance. In this paper, we applied off-line incremental behavior, so as to be able to analyze it at several levels of depth and at different moments. As a preliminary evaluation of our approach, we investigated the coding activities of six novice students of a Java academic programming course working on a programming case study. The results provide some useful information about the initial difficulties in coding activities faced by programmers and show that their coding behavior could be considered as “formed” after a development task requiring approximately 4000 rows of code.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Navigating software development in the ChatGPT and GitHub Copilot era;Business Horizons;2024-05

2. Clusters of Solvers' Behavioral Patterns Based on Analysis of the Programming Process;2023 IEEE Frontiers in Education Conference (FIE);2023-10-18

3. Explain Trace: Misconceptions of Control-Flow Statements;Computers;2023-09-24

4. Enhancing the website usage using process mining;International Journal of Quality & Reliability Management;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3