Author:
Nguyen Tuyen,Paik Incheon,Watanobe Yutaka,Thang Truong Cong
Abstract
Quantum computing is expected to fundamentally change computer systems in the future. Recently, a new research topic of quantum computing is the hybrid quantum–classical approach for machine learning, in which a parameterized quantum circuit, also called quantum neural network (QNN), is optimized by a classical computer. This hybrid approach can have the benefits of both quantum computing and classical machine learning methods. In this early stage, it is of crucial importance to understand the new characteristics of quantum neural networks for different machine learning tasks. In this paper, we will study quantum neural networks for the task of classifying images, which are high-dimensional spatial data. In contrast to previous evaluations of low-dimensional or scalar data, we will investigate the impacts of practical encoding types, circuit depth, bias term, and readout on classification performance on the popular MNIST image dataset. Various interesting findings on learning behaviors of different QNNs are obtained through experimental results. To the best of our knowledge, this is the first work that considers various QNN aspects for image data.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献