A Vacuum Transistor Based on Field-Assisted Thermionic Emission from a Multiwalled Carbon Nanotube

Author:

He YidanORCID,Li ZhiweiORCID,Mao Shuyu,Zhan Fangyuan,Wei Xianlong

Abstract

Vacuum triodes have been scaled down to the microscale on a chip by microfabrication technologies to be vacuum transistors. Most of the reported devices are based on field electron emission, which suffer from the problems of unstable electron emission, poor uniformity, and high requirement for operating vacuum. Here, to overcome these problems, a vacuum transistor based on Field-Assisted thermionic emission from individual carbon nanotubes is proposed and fabricated using microfabrication technologies. The carbon nanotube vacuum transistor exhibits an ON/OFF current ratio as high as 104 and a subthreshold slope of ~4 V·dec−1. The gate controllability is found to be strongly dependent on the distance between the collector electrodes and electron emitter, and a device with the distance of 1.5 μm shows a better gate controllability than that with the distance of 0.5 μm. Benefiting from Field-Assisted thermionic emission mechanism, electric field required in our devices is about one order of magnitude smaller than that in the devices based on field electron emission, and the surface of the emitters shows much less gas molecule absorption than cold field emitters. These are expected to be helpful for improving the stability and uniformity of the devices.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3