Application of Generative Adversarial Network to Optimize Vehicle Allocation at Dispatch Stations of Paratransit Services

Author:

Chen Yi-ChungORCID,Loh Chee-Hoe,Wang Fu-Cheng,Chen Zi-Jing,Fu Shau-Huai,Wang Chen-Yu

Abstract

As aging populations increase worldwide, many governments have introduced the concept of paratransit services to assist individuals with limited mobility with transportation. A successful paratransit service must be able to satisfy most requests to the system; this success is typically related to the allocation of vehicles to dispatch stations. A suitable configuration can reduce unnecessary travel time and thus serve more people. This resembles the classic Dial-a-Ride problem, which previous studies have solved using heuristic algorithms. Most of these algorithms, however, incur heavy computational costs and, therefore, cannot be operated online, especially when there are many conditions to consider, many configuration requirements, or many vehicles requested. Therefore, this paper proposes an approach based on the generative adversary network (GAN), which can reduce computation significantly. In online environments, this approach can be implemented in just a few seconds. Furthermore, the amount of computation is not affected by the number of conditions, configuration requirements, or vehicles requested. This approach is based on three important concepts: (1) designing a GAN to solve the target problem; (2) using an improved Voronoi diagram to divide the overall service area to generate the input of the GAN generator; (3) using well-known system simulation software Arena to swiftly generate many conditions for the target problem and their corresponding best solutions to train the GAN. The efficiency of the proposed approach was verified using a case study of paratransit services in Yunlin, Taiwan.

Funder

Ministry of Science and Technology, Taiwan; National Taiwan University Hospital Yun-Lin Branch

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3