Abstract
This paper presents the development of a novel contactless omnidirectional capacitive proximity sensor. The presented device has been designed to be energy-efficient (≈5 mW power consumption) by means of duty-cycling the power supply. A comprehensive methodological experiment has been carried out to extensively evaluate the performance within the sensing range (5–10 cm). A simple boot-up self-adjustment mechanism has been implemented using a digital potentiometer. This feature allows for an effortless utilization of the proposed device in a wide variety of potential applications, including mobile robotics and human–machine interaction.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献