A Novel Approach to Face Pattern Analysis

Author:

Bhushan ShashiORCID,Alshehri MohammedORCID,Agarwal NehaORCID,Keshta IsmailORCID,Rajpurohit Jitendra,Abugabah AhedORCID

Abstract

Recognizing facial expressions is a major challenge and will be required in the latest fields of research such as the industrial Internet of Things. Currently, the available methods are useful for detecting singular facial images, but they are very hard to extract. The main aim of face detection is to capture an image in real-time and search for the image in the available dataset. So, by using this biometric feature, one can recognize and verify the person’s image by their facial features. Many researchers have used Principal Component Analysis (PCA), Support Vector Machine (SVM), a combination of PCA and SVM, PCA with an Artificial Neural Network, and even the traditional PCA-SVM to improve face recognition. PCA-SVM is better than PCA-ANN as PCA-ANN has the limitation of a small dataset. As far as classification and generalization are concerned, SVM requires fewer parameters and generates less generalization errors than an ANN. In this paper, we propose a new framework, called FRS-DCT-SVM, that uses GA-RBF for face detection and optimization and the discrete cosine transform (DCT) to extract features. FRS-DCT-SVM using GA-RBF gives better results in terms of clustering time. The average accuracy received by FRS-DCT-SVM using GA-RBF is 98.346, which is better than that of PCA-SVM and SVM-DCT (86.668 and 96.098, respectively). In addition, a comparison is made based on the training, testing, and classification times.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3