Abstract
The iterative Fourier transform algorithm (IFTA) is widely used in various optical communication applications based on liquid crystal on silicon spatial light modulators. However, the traditional iterative method has many disadvantages, such as a poor effect, an inability to select an optimization direction, and the failure to consider zero padding or phase quantization. Moreover, after years of development, the emergence of various variant algorithms also makes it difficult for researchers to choose one. In this paper, a new intelligent hybrid algorithm that combines the IFTA and differential evolution algorithm is proposed in a novel way. The reliability of the proposed algorithm is verified by beam splitting, and the IFTA and symmetrical IFTA algorithms, for comparison, are introduced. The hybrid algorithm improves the defects above while considering the zero padding and phase quantization of a computer-generated hologram, which optimizes the directional optimization in the diffraction efficiency and the fidelity of the output beam and improves the results of these two algorithms. As a result, the engineers’ trouble in the selection of an algorithm has also been reduced.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献