Author:
Wang Hao,Li Guoqing,Hou Jie,Chen Lianyun,Hu Nailian
Abstract
Path planning is one of the key technologies for unmanned driving of underground intelligent vehicles. Due to the complexity of the drift environment and the vehicle structure, some improvements should be made to adapt to underground mining conditions. This paper proposes a path planning method based on an improved RRT* (Rapidly-Exploring Random Tree Star) algorithm for solving the problem of path planning for underground intelligent vehicles based on articulated structure and drift environment conditions. The kinematics of underground intelligent vehicles are realized by vectorized map and dynamic constraints. The RRT* algorithm is selected for improvement, including dynamic step size, steering angle constraints, and optimal tree reconnection. The simulation case study proves the effectiveness of the algorithm, with a lower path length, lower node count, and 100% steering angle efficiency.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献