A Unified Topology for the Integration of Electric Vehicle, Renewable Energy Source, and Active Filtering for the Power Quality Improvement of the Electrical Power Grid: An Experimental Validation

Author:

Monteiro VitorORCID,Afonso Joao L.ORCID

Abstract

Electrical power grids are facing challenges concerning new linked technologies and associated contributions of power electronics, both regarding innovative topologies of power converters and advanced power management algorithms. Additionally, technologies related to renewables and electric mobility have several points in common, especially about the interface with the power grid, which allows to foresee a convergence for unified solutions in the power grid interface, without jeopardizing the functionalities and added values of each technology. Encompassing this purpose, this paper presents a unified topology, based on a three-phase structure, which, in addition to a collaborative operation with the power grid targeting the compensation of power quality problems, also enables the integration of a renewable energy source and an electric vehicle. The main contribution of this paper resides in the fact that only an interface with the power grid is necessary to involve three central features of smart grids: renewables, electric mobility, and power quality. Overall, the unified topology presents a four-quadrant structure, both in the perspective of AC and DC interfaces, offering multiple functionalities, mainly to the power grid. In the AC interface, the structure operates in interleaved mode, while in the DC interface, the structure operates in multilevel mode. The global control algorithm is presented, covering the interconnection between the mentioned technologies, as well as the details of implementation of the individual control algorithms regarding each interface. A laboratory prototype, connected to a three-phase 400 V-50 Hz power grid, was used to obtain an experimental validation for a maximum operating power of 12.5 kW, corroborating the essential advantage characteristics and the correct functioning of the presented unified topology.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traffic-Based Validation of Virtualized Communication Networks;2024 9th International Conference on Smart and Sustainable Technologies (SpliTech);2024-06-25

2. Vehicle electrification and power quality optimization;Vehicle Electrification in Modern Power Grids;2024

3. Control, optimization, and management of vehicle electrification in modern power grids;Vehicle Electrification in Modern Power Grids;2024

4. Legislations and grid codes of vehicle electrification into power grids;Vehicle Electrification in Modern Power Grids;2024

5. The Future of Electrical Power Grids: A Direction Rooted in Power Electronics;Energies;2023-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3