Abstract
Metamaterials are artificially engineered devices that go beyond the properties of conventional materials in nature. Metamaterials allow for the creation of negative refractive indexes; light trapping with epsilon-near-zero compounds; bandgap selection; superconductivity phenomena; non-Hermitian responses; and more generally, manipulation of the propagation of electromagnetic and acoustic waves. In the past, low computational resources and the lack of proper manufacturing techniques have limited attention towards 1-D and 2-D metamaterials. However, the true potential of metamaterials is ultimately reached in 3-D configurations, when the degrees of freedom associated with the propagating direction are fully exploited in design. This is expected to lead to a new era in the field of metamaterials, from which future high-speed and low-latency communication networks can benefit. Here, a comprehensive overview of the past, present, and future trends related to 3-D metamaterial devices is presented, focusing on efficient computational methods, innovative designs, and functional manufacturing techniques.
Funder
Ministerio de Universidades, Spanish Govern
BBVA Foundation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献