Abstract
As a variant modular converter configuration, the alternate arm converter (AAC) is well-suited for high-voltage power transmission and large-scale integration of renewables. In contrast to conventional multilevel converters, the director switches in the arms of AAC lead to the introduction of an overlap period, during which circuiting current can flow through the two arms in the same phase. Thus, fixed or variable overlap period control can be implemented in AAC systems so as to dynamically balance stored arm energy. However, the control of overlap period is linked to instability issues that might impede the safe operation of AAC systems, which are yet to be reported. In this paper, the stability of an AAC system is demonstrated based on measured grid and converter impedance, in conjunction with impedance-based stability criterion in the dq frame. The interaction between harmonic sources at AC and DC sides of the AAC system is analyzed to determine resonant frequencies in the AC current when any potential resonance is identified in the dq frame. Novel results with respect to the impact of overlap period on the system stability are obtained by depicting and comparing the Eigenloci in the polar plot, which are validated by real-time simulations.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献