Author:
Rubenecia Areeya,Choi Myungwhan,Choi Hyo-Hyun
Abstract
We present a three-dimensional (3D) intersection traffic management platform for small autonomous Unmanned Aerial Vehicles (UAVs), particularly quadcopters, in urban airspace. Assuming many autonomous UAVs are approaching a shared airspace, where UAVs have varying sources and destinations, we propose a system model for a 3D intersection that aims to provide safe and systematic management of UAVs. We also devised a scheduling scheme to ensure that the intersection is efficiently utilized and that there are no collisions among the UAVs in the intersection. The scheduling scheme applies the reservation-based approach, which is sensitive to the sequence of the UAVs in scheduling, thus genetic algorithm is used to determine the best sequence of the UAVs. Simulations were performed to evaluate the efficiency of the system. We also show through the simulations that our scheduling scheme reduces the UAVs’ average time in the system by 27 percent compared with when the UAVs are scheduled in a first-come, first-served manner for the highly crowded intersection.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering