Reservation-Based 3D Intersection Traffic Control System for Autonomous Unmanned Aerial Vehicles

Author:

Rubenecia Areeya,Choi Myungwhan,Choi Hyo-Hyun

Abstract

We present a three-dimensional (3D) intersection traffic management platform for small autonomous Unmanned Aerial Vehicles (UAVs), particularly quadcopters, in urban airspace. Assuming many autonomous UAVs are approaching a shared airspace, where UAVs have varying sources and destinations, we propose a system model for a 3D intersection that aims to provide safe and systematic management of UAVs. We also devised a scheduling scheme to ensure that the intersection is efficiently utilized and that there are no collisions among the UAVs in the intersection. The scheduling scheme applies the reservation-based approach, which is sensitive to the sequence of the UAVs in scheduling, thus genetic algorithm is used to determine the best sequence of the UAVs. Simulations were performed to evaluate the efficiency of the system. We also show through the simulations that our scheduling scheme reduces the UAVs’ average time in the system by 27 percent compared with when the UAVs are scheduled in a first-come, first-served manner for the highly crowded intersection.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3