Abstract
A dual-band gyrotron traveling wave amplifier (Gyro-TWT) can reduce the size, cost, and weight of a transmitter in dual-band radar and communication systems. In this paper, a dual-mode input coupler for K/Ka dual-band gyrotron traveling wave amplifier (Gyro-TWT) is designed. This structure is composed of two different types of input couplers, one is the coaxial input coupler for the Ka-band TE2,1 Gyro-TWT and the other is a Y-type input coupler for the K-band TE1,1 Gyro-TWT. For reducing the backward wave of the TE2,1 mode reflecting into the Y-type input coupler to influence the operating bandwidth, a Bragg reflector with a strong mode selective characteristic is inserted between these two couplers, which can make the reflection coefficient of the TE2,1 mode better than −1 dB and the phase matched in the whole bandwidth, and the transmission coefficient of the TE1,1 mode can reach better than −1 dB. Based on the simulation results, the −1 dB bandwidth of the Ka-band TE1,0⬜-TE2,1◯ mode input coupler reaches 3.32 GHz and the −1 dB bandwidth of K-band TE1,0⬜-TE1,1◯ mode input coupler reaches 3.15 GHz. The designed dual-mode input coupler has the advantages of broad bandwidth and low loss and can be well used in dual-band Gyro-TWTs.
Funder
National Natural Science Foundation of China
the Dean Project of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献