Deep Reinforcement Learning-Based Multipath Routing for LEO Megaconstellation Networks

Author:

Han Chi1ORCID,Xiong Wei12,Yu Ronghuan12

Affiliation:

1. National Key Laboratory of Space Target Awareness, Space Engineering University, Beijing 101400, China

2. School of Space Information, Space Engineering University, Beijing 101400, China

Abstract

The expansion of megaconstellation networks (MCNs) represents a promising solution for achieving global Internet coverage. To meet the growing demand for satellite services, multipath routing allows the simultaneous establishment of multiple transmission paths, enabling the transmission of flows in parallel. Nevertheless, the mobility of satellites and time-varying link states presents a challenge for the discovery of optimal paths and traffic scheduling in multipath routing. Given the inflexibility of traditional static deep reinforcement learning (DRL)-based routing algorithms in dealing with time-varying constellation topologies, DRL-based multipath routing (DMR) enabled by a graph neural network (GNN) is proposed as a means of enhancing the transmission performance of MCNs. DMR decouples the stochastic optimization problem of multipath routing under traffic and bandwidth constraints into two subproblems: multipath routing discovery and multipath traffic scheduling. Firstly, the minimum hop count-based multipath route discovery algorithm (MHMRD) is proposed for the computation of multiple available paths between all source and destination nodes. Secondly, the GNN-based multipath traffic scheduling scheme (GMTS) is proposed as a means of dynamically scheduling the traffic on each available path for each data stream, based on the state information of ISLs and traffic demand. Simulation results demonstrate that the proposed scheme can be scaled to constellations with different configurations without the necessity for repeated training and enhance the throughput, completion ratio, and delay by 42.64%, 17.39%, and 3.66% in comparison with the shortest path first algorithm (SPF), respectively.

Funder

National Key Laboratory Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3