Efficient Sparse Bayesian Learning Model for Image Reconstruction Based on Laplacian Hierarchical Priors and GAMP

Author:

Jin Wenzhe1,Lyu Wentao1,Chen Yingrou1,Guo Qing2,Deng Zhijiang3,Xu Weiqiang1ORCID

Affiliation:

1. Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. Zhejiang Technical Innovation Service Center, Hangzhou 310007, China

3. Fox-ess, Co., Ltd., Wenzhou 325024, China

Abstract

In this paper, we present a novel sparse Bayesian learning (SBL) method for image reconstruction. We integrate the generalized approximate message passing (GAMP) algorithm and Laplacian hierarchical priors (LHP) into a basic SBL model (called LHP-GAMP-SBL) to improve the reconstruction efficiency. In our SBL model, the GAMP structure is used to estimate the mean and variance without matrix inversion in the E-step, while LHP is used to update the hyperparameters in the M-step.The combination of these two structures further deepens the hierarchical structures of the model. The representation ability of the model is enhanced so that the reconstruction accuracy can be improved. Moreover, the introduction of LHP accelerates the convergence of GAMP, which shortens the reconstruction time of the model. Experimental results verify the effectiveness of our method.

Funder

National Natural Science Foundation of China

Key Research and Development Program Foundation of Zhejiang

Publisher

MDPI AG

Reference19 articles.

1. An efficient sparse Bayesian learning algorithm based on Gaussian-scale mixtures;Zhou;IEEE Trans. Neural Netw. Learn. Syst.,2021

2. Sparse Bayesian learning and the relevance vector machine;Tipping;J. Mach. Learn. Res.,2001

3. Sparse Bayesian learning for basis selection;Wipf;IEEE Trans. Signal Process.,2004

4. Image reconstruction for low-oversampled staggered SAR based on sparsity Bayesian learning in the presence of a nonlinear PRI variation strategy;Zhang;IEEE Trans. Geosci. Remote Sens.,2022

5. Chen, P., Zhao, J., and Bai, X. (2019, January 11–13). Block Inverse-free Sparse Bayesian Learning for Block Sparse Signal Recovery. Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3